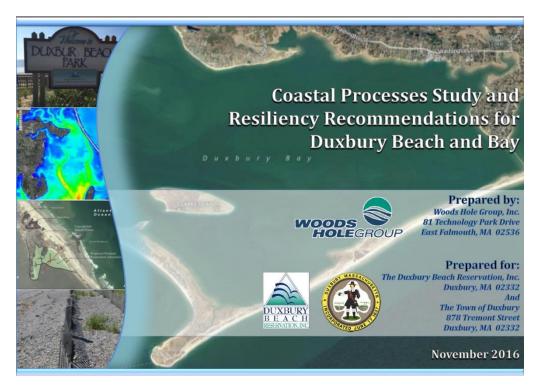


The Future of Duxbury Beach

Planning in the Face of Climate Change

February 12, 2020

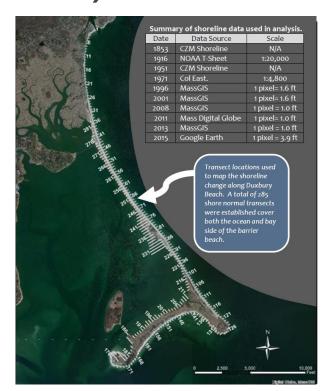

Presentation Overview

1. Background & Existing Conditions

- 2. Current CZM Coastal Resiliency Grant
 - Potential Project Areas
 - Permitting
- 3. Overall Timeline & Process

November 2016 Coastal Processes Study & Resiliency Recommendations

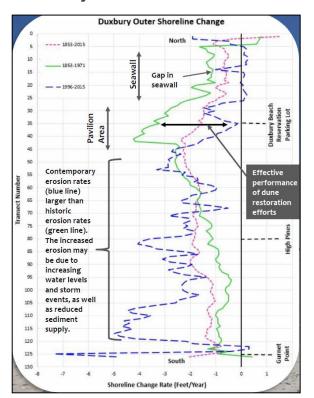
The 2016 report looked at:


- Historical Shoreline Change
- Field Data Collection
- Hydrodynamics
- Waves & Sediment Transport
- Conceptual Resiliency Adaptations

November 2016 Coastal Processes Study & Resiliency Recommendations

Historical Shoreline Change

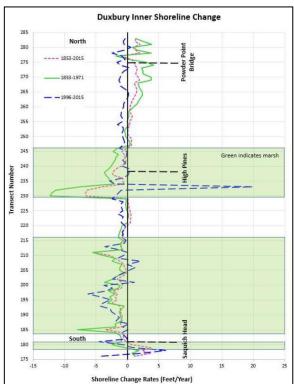
- Aerial photos and historical maps and charts from 1853 to 2015
- Entire 15 mile coastline of Duxbury Beach (285 transects)



November 2016 Coastal Processes Study & Resiliency Recommendations

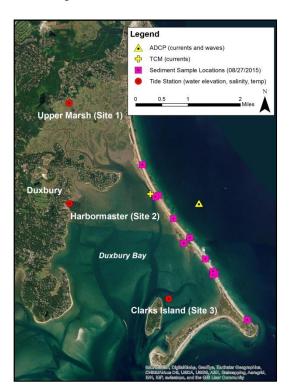
Historical Shoreline Change - Results

Ocean beach



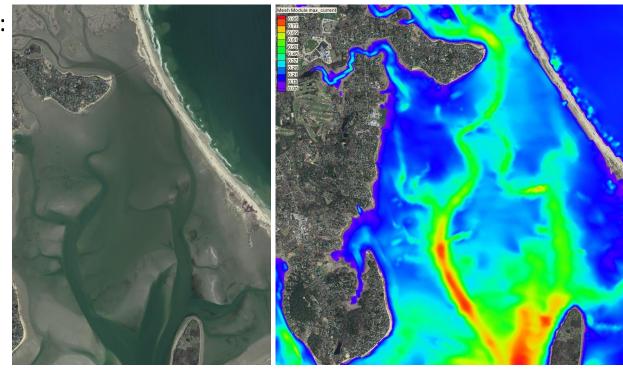
November 2016 Coastal Processes Study & Resiliency Recommendations

Historical Shoreline Change - Results



November 2016 Coastal Processes Study & Resiliency Recommendations

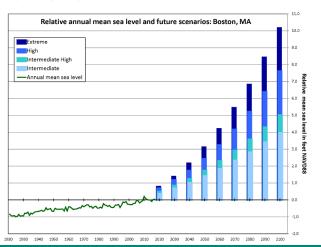
Field Data Collection:

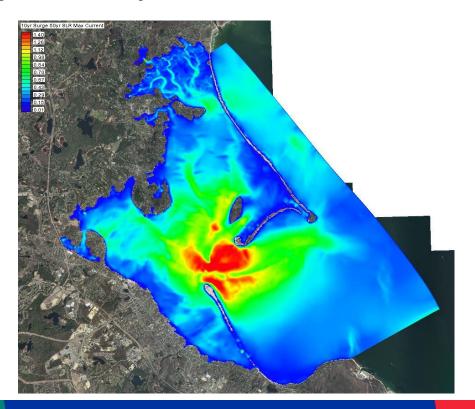

- ADCP wave observations
- Tidal Current Measurements (TCM) –
 velocities at erosional area (cobble berm)
- Sediment Samples input to sediment transport models; grain size compatibility for nourishment
- Tide Stations used to calibrate hydrodynamic model of Duxbury Bay

November 2016 Coastal Processes Study & Resiliency Recommendations

Hydrodynamic Modeling:

Bayside area erosion

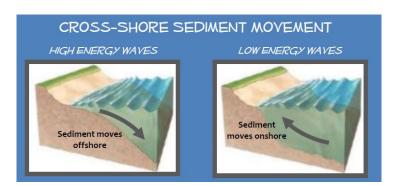


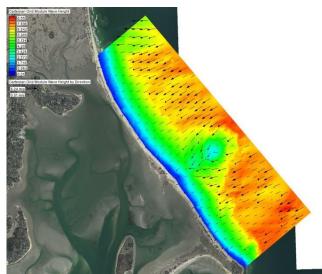


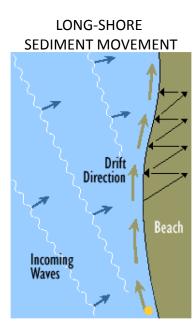
November 2016 Coastal Processes Study & Resiliency Recommendations

Hydrodynamic Modeling:

- Normal tide vs. storm conditions
- Present vs. future sea-level rise conditions

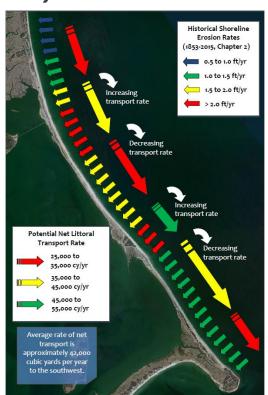





November 2016 Coastal Processes Study & Resiliency Recommendations

Waves & Sediment Transport:

 Normal tide conditions vs. storm conditions



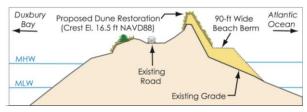
November 2016 Coastal Processes Study & Resiliency Recommendations

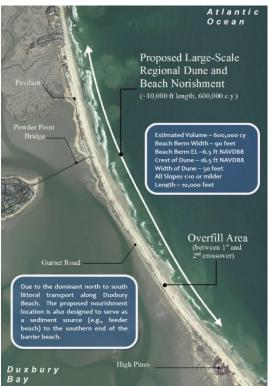
Sediment Transport:

 Net sediment transport is from north to south

November 2016 Coastal Processes Study & Resiliency Recommendations

Conceptual Resiliency Actions


- 1. Regional Adaptation: Dune and Beach Nourishment
- 2. Site 1: Duxbury Beach Park Pavilion
- 3. Site 2: Powder Point Bridge
- 4. Site 3: Bay Side Channel
- 5. Site 4: 1st and 2nd Crossover
- 6. Site 5: High Pines
- 7. Site 6: High Pines Salt Marsh
- 8. Site 7: 3rd Crossover
- 9. Site 8: Bayside New Road
- 10. Site 9: Plum Hills



November 2016 Coastal Processes Study & Resiliency Recommendations

Conceptual Resiliency Actions

- 1. Regional Adaptation: Dune and Beach Nourishment
- 2. Site 1: Duxbury Beach Park Pavilion
- 3. Site 2: Powder Point Bridge
- 4. Site 3: Bay Side Channel
- 5. Site 4: 1st and 2nd Crossover
- 6. Site 5: High Pines
- 7. Site 6: High Pines Salt Marsh
- 8. Site 7: 3rd Crossover
- 9. Site 8: Bayside New Road
- 10.Site 9: Plum Hills

November 2016 Coastal Processes Study & Resiliency Recommendations

Conceptual Resiliency Actions

1. Regional Adaptation: Dune and Beach Nourishment

2. Site 1: Duxbury Beach Park Pavilion

3. Site 2: Powder Point Bridge

4. Site 3: Bay Side Channel

5. Site 4: 1st and 2nd Crossover

6. Site 5: High Pines

7. Site 6: High Pines Salt Marsh

8. Site 7: 3rd Crossover

9. Site 8: Bayside New Road

10.Site 9: Plum Hills

Project Specs

 \Rightarrow 1,000 linear feet

⇒ Add 50,000-60,000 tons of compatible material

⇒ Elevate crest of dune to 16.5ft NAVD88

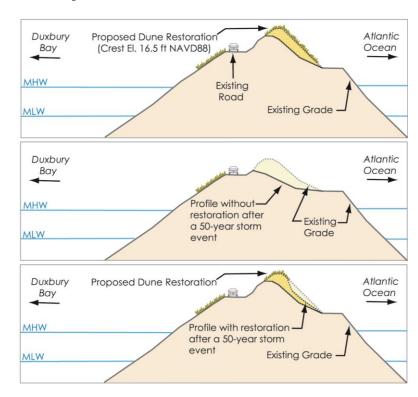
⇒ Widen dune width to 50ft

⇒ Elevate beach berm to 6.5ft NAVD88

⇒ Create slopes 1:10 or milder

Plant 22,000 culms American
 Beach Grass 36in on center

Awarded NAWCA Grant



November 2016 Coastal Processes Study & Resiliency Recommendations

Conceptual Resiliency Actions

- 1. Regional Adaptation: Dune and Beach Nourishment
- 2. Site 1: Duxbury Beach Park Pavilion
- 3. Site 2: Powder Point Bridge
- 4. Site 3: Bay Side Channel
- 5. Site 4: 1st and 2nd Crossover
- 6. Site 5: High Pines
- 7. Site 6: High Pines Salt Marsh
- 8. Site 7: 3rd Crossover
- 9. Site 8: Bayside New Road
- 10. Site 9: Plum Hills

November 2016 Coastal Processes Study & Resiliency Recommendations

Conceptual Resiliency Actions

1. Regional Adaptation: Dune and Beach Nourishment

2. Site 1: Duxbury Beach Park Pavilion

3. Site 2: Powder Point Bridge

4. Site 3: Bay Side Channel

5. Site 4: 1st and 2nd Crossover

6. Site 5: High Pines

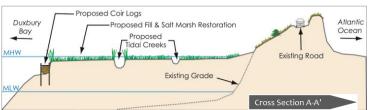
7. Site 6: High Pines Salt Marsh

8. Site 7: 3rd Crossover

9. Site 8: Bayside New Road

10.Site 9: Plum Hills

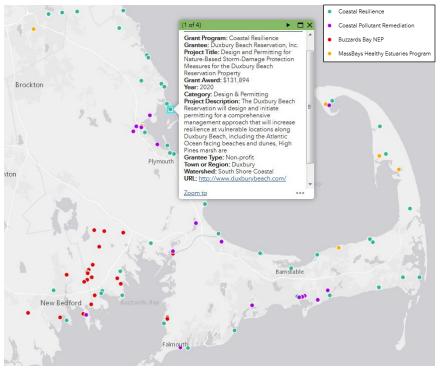
Dune restoration - winter 2018/2019



November 2016 Coastal Processes Study & Resiliency Recommendations

Conceptual Resiliency Actions

- 1. Regional Adaptation: Dune and Beach Nouri
- 2. Site 1: Duxbury Beach Park Pavilion
- 3. Site 2: Powder Point Bridge
- 4. Site 3: Bay Side Channel
- 5. Site 4: 1st and 2nd Crossover
- 6. Site 5: High Pines
- 7. Site 6: High Pines Salt Marsh
- 8. Site 7: 3rd Crossover
- 9. Site 8: Bayside New Road
- 10.Site 9: Plum Hills


November 2016 Coastal Processes Study & Resiliency Recommendations

Outcomes of 2016 Study:

- Detailed understanding of local coastal processes (present & future)
- A suite of coastal resiliency recommendations
 - Some of these projects, such as the dune restoration between the 1st and 2nd crossover, have already been implemented
- Additional permitting necessary to move remaining recommendations forward

Goals & Scope of Work

Design and Permitting for Nature-Based Storm-Damage Protection Measures

Goals:

- Build on 2016 report recommendations
- Develop a comprehensive management approach
- Flexibility to implement projects on an as needed basis
 - Response to storms and future SLR
 - Availability of funding and/or sand sources

Scope of work:

- Additional field data collection
- Alternatives analysis
- Develop engineering designs
- Begin permitting process (EENF)

Goals & Scope of Work

Design and Permitting for Nature-Based Storm-Damage Protection Measures

Four Key Areas:

- 1. Ocean-facing beaches & dunes
- 2. High Pines salt marsh
- 3. Erosional area of bayside roadway
- 4. Low areas of roadway vulnerable to flooding

Five Key Areas – Ocean Facing Beaches and Dunes

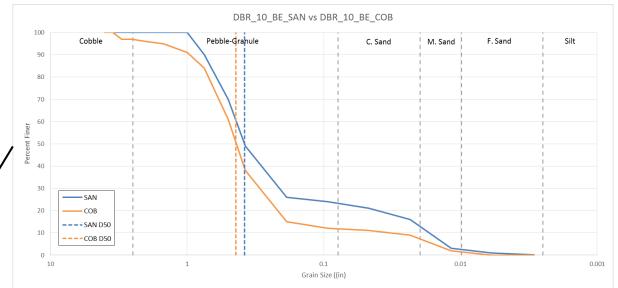
Design and Permitting for Nature-Based Storm-Damage Protection Measures

Four Key Areas:

- 1. Ocean-facing beaches & dunes
- 2. High Pines salt marsh
- 3. Erosional area of bayside roadway
- 4. Low areas of roadway vulnerable to flooding

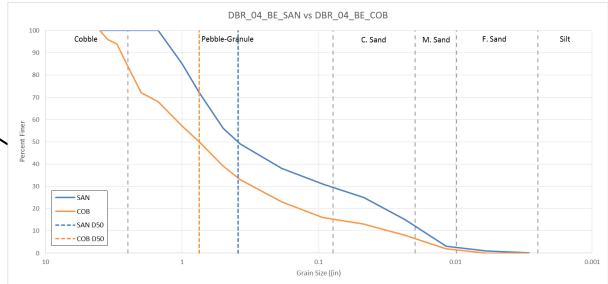
Five Key Areas – Ocean Facing Beaches and Dunes

Resource area delineations – rocky intertidal shore



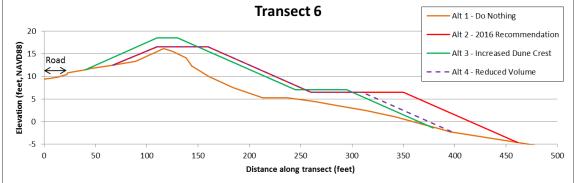
Five Key Areas – Ocean Facing Beaches and Dunes

Grain size sampling and characterization



Five Key Areas – Ocean Facing Beaches and Dunes

Grain size sampling and characterization



Five Key Areas – Ocean Facing Beaches and Dunes

Topographic survey and alternative nourishment designs

	Crest Height (ft, NAVD88)	Crest Width (ft)	Berm Height (ft, NAVD88)	Berm Width (ft)
Alt 2	16.5	50	6.5	90
Alt 3	18.5	20	7.0	50
Alt 4	16.5	50	6.5	50

Five Key Areas – High Pines Salt Marsh

Design and Permitting for Nature-Based Storm-Damage Protection Measures

Four Key Areas:

- 1. Ocean-facing beaches & dunes
- 2. High Pines salt marsh
- 3. Erosional area of bayside roadway
- 4. Low areas of roadway vulnerable to flooding

Five Key Areas – High Pines Salt Marsh

Salt marsh habitat delineation & topographic survey of the High Pines salt marsh area

Five Key Areas – High Pines Salt Marsh

Salt marsh restoration alternatives

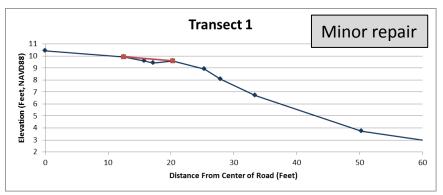
Five Key Areas – Erosional Area on Bayside of Roadway

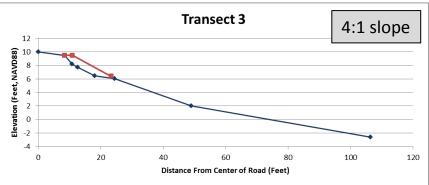
Design and Permitting for Nature-Based Storm-Damage Protection Measures

Four Key Areas:

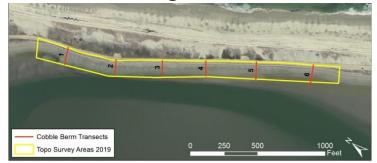
- 1. Ocean-facing beaches & dunes
- 2. High Pines salt marsh
- 3. Erosional area of bayside roadway
- 4. Low areas of roadway vulnerable to flooding

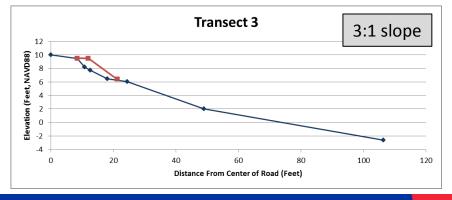
Five Key Areas – Erosional Area on Bayside of Roadway




Existing conditions

- Resource Area Delineations
- Topographic Survey




Five Key Areas – Erosional Area on Bayside of Roadway

Alternative designs for cobble berm

Five Key Areas – Low Areas of Roadway Vulnerable to Flooding

Design and Permitting for Nature-Based Storm-Damage Protection Measures

Four Key Areas:

- 1. Ocean-facing beaches & dunes
- 2. High Pines salt marsh
- 3. Erosional area of bayside roadway
- 4. Low areas of roadway vulnerable to flooding

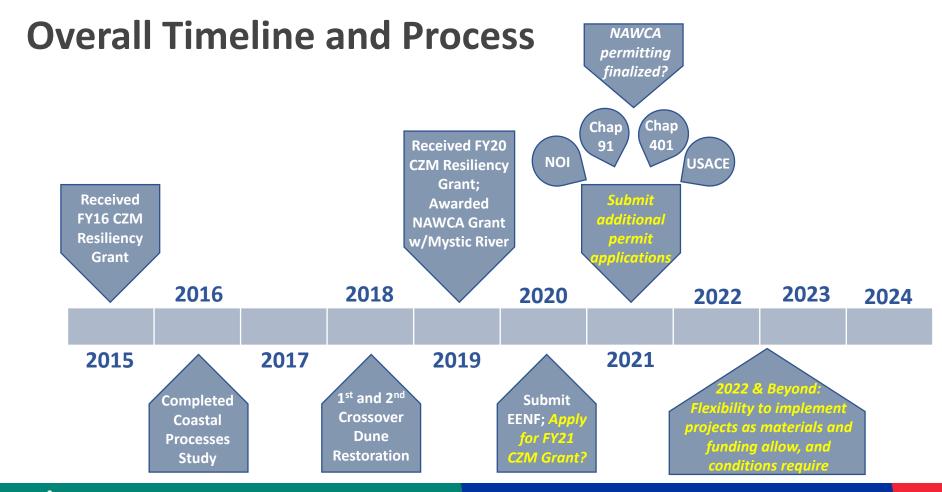
Five Key Areas - Low Areas of Roadway Vulnerable to Flooding

Five Key Areas – Low Areas of Roadway Vulnerable to Flooding

Design and Permitting for Nature-Based Storm-Damage Protection Measures

Five Key Areas:

- 1. Ocean-facing beaches & dunes
- 2. High Pines salt marsh
- 3. Erosional area of bayside roadway
- 4. Low areas of roadway vulnerable to flooding



Permitting

Remaining Steps:

- 1. Finalize alternatives analyses
- 2. Develop engineering designs
- 3. Submit Expanded
 Environmental Notification
 Form (EENF) to MEPA
- 4. Second public outreach event (date TBD)
- 5. Deadline June 30, 2020

Questions?

